How predictive is short-term body-weight loss in the longer term for decision making during clinical drug development?

Motivation

Why is research in the area of obesity of interest and highly relevant?

- Worldwide prevalence of obesity has tripled since 1975 and is still rising (Fig. 1) [1].
- Adults: 39% overweight and 13% obese (2016) [2].
- 2.8 million deaths/year resulting from overweight/obesity.
- Obesity is major risk factor for chronic diseases.
 - Weight loss can significantly improve these outcomes.

What are the key challenges?

- High unmet medical need for effective and safe therapy of patients with overweight or obesity.
- Trials without specific duration (T2D).
- Few approved weight-loss compounds with limited efficacy (3%-7% body-weight loss).
- Clinical trials in T2D/obesity are time-consuming and expensive.

Objectives

- What are the objectives of this work?
 - Make use of publicly-available (summary-level) clinical trial data to:
 - Investigate if this relationship is consistent across compounds and populations.
 - Evaluate the effect of potential predictors (e.g. indication) on this relationship.

Methods

- Randomised, controlled Phase IV & V clinical trials:
 - Patients with obesity or T2D
 - Receiving incretin-based therapies (GLP-1 agonists, DPP-4 inhibitors, dual GLP/GIP agonists)
 - Weight loss endpoints (incl. baseline weight).
 - Published from 01/2010 until 11/2018.

Clinical database

- Mainly parallel, double-blind phase 3 studies in peer-reviewed journals.
- Reported weight-loss endpoints:
 - Absolute weight loss or relative change from baseline (including baseline weight).
 - Patients ≥18 years were excluded (n=9).
 - Baseline Arm Characteristics stratified by indication revealed distinct differences between patients with/without T2D (Tab. 1).
 - Trials arms comprised (in descending order) GLP-1 agonists, placebo, DPP4 inhibitors and dual agonists.

Regression-based meta analysis

- Regression-based meta-analysis [5] was performed on summary-level data (using 90% of available data → “development dataset”), influence of potential additional predictors (baseline BMI/age, indication, drug class) was tested.
 - To account for differences in trials sizes, weighting according to trial arm size was used.
 - Strong correlation between of ΔWT, t=4 weeks and ΔWT, t=14 weeks was identified (Fig. 3, t=0.87, with 95% confidence interval 0.64-0.89).
 - Evaluation of predictors revealed statistically significant influence of trial arm baseline WT (P = 0.005), additional predictors were not significant (BMI, age, indication, drug class).
 - External model evaluation revealed good model performance using “test dataset”, i.e. the remaining 10% of available data (Fig. 4, red data points).

Results

Exploratory analysis

- Key aspect is reduction in mean body weight relative to baseline (ΔWT, %) after 12, 24 or 52 weeks (Fig. 2).
 - Most data available up to 24-26 weeks.
 - Pronounced differences between placebo and treatment arms (Fig. 2).
 - For trial arms comprising placebo and DPP4-agonists, ΔWT was relatively small, but for GLP-1 and dual GLP/GIP agonists maximum ΔWT was 10%-20%.
 - Linear relation between short-term ΔWT, t=4 and long-term ΔWT, t=14 weeks identified (Fig. 3).

In the following, exemplary for the applied workflow, the analysis of ΔWT, t=4 weeks versus ΔWT, t=14-weeks is shown:

Conclusions and Perspectives

- Analysis revealed high correlation between ΔWT, t=4 weeks and ΔWT, t=14 weeks for all investigated treatments independent of mechanism of action or dosing regimen.
- Further exploration of correlations including potential predictors, e.g. baseline WT/BMI/age, induction or drug class revealed significant influence of trial arm baseline WT, which was illustrated using 50% (90 kg) and 95% percentile (110 kg) of baseline WT distribution.
- Results of this analysis can be easily visualised, interpreted and communicated.
- Strong relation between ΔWT, t=4 weeks and ΔWT, t=14 weeks can be used to inform and optimise clinical trial design, e.g. perform early interim data analyses or reduce trial length.
- The presented workflow was successfully applied and integrated into a clinical project.

Acknowledgements

The authors wish to acknowledge Paul M. Diderichsen, Quantitative Solutions, Certara Strategic Consulting, for scientific advice and guidance throughout the project work.

References

For additional information, please contact: Franziska Kluwe
fraanziska.kluwe@fu-berlin.de

Presented at the 100th American Conference on Pharmaceutics, Orlando, Florida, USA, 2019.